# The Crystal Structure of NaAs₄O<sub>6</sub>Br\*

## F. PERTLIK

Institut für Mineralogie und Kristallographie der Universität Wien, Dr. Karl Lueger-Ring 1, A-1010 Vienna, Austria

Received December 15, 1986

The crystal structure of NaAs<sub>4</sub>O<sub>6</sub>Br [a = 5.237(1), b = 8.043(1), c = 18.978(2) Å; space group  $Pmcn-D_{2h}^{ib}$ ; Z = 4] was solved by a direct method strategy and was refined to an R value of 0.038 for 1515 intensities and 68 variables. The structure is characterized by neutrally charged and slightly waved As<sub>2</sub>O<sub>3</sub> sheets arranged parallel to (001). These sheets are combined by the Na and Br atoms. The Na atom is coordinated to nine oxygen atoms and one bromine atom and the Br atom is coordinated to six arsenic atoms and one sodium atom. The compound NaAs<sub>4</sub>O<sub>6</sub>Br was synthesized by thermal treatment of NaBr and As<sub>2</sub>O<sub>3</sub> in methanol solution [400(5) K, saturation vapor pressure]. @ 1987 Academic Press, Inc.

## Introduction

In connection with the syntheses of  $A_s(III)$ -oxygen compounds (1) parts of the system MeX-As<sub>2</sub>O<sub>3</sub> (Me, alkali metal or a NH<sub>4</sub> group and X, halide) in methanol solution were investigated under moderate hydrothermal conditions. Up to 500 K, crystals of the two compounds (NH<sub>4</sub>Cl · As<sub>2</sub>O<sub>3</sub>)<sub>2</sub> · H<sub>2</sub>O and NaAs<sub>4</sub>O<sub>6</sub>Br were obtained. Whereas the structure of (NH<sub>4</sub>Cl · As<sub>2</sub>O<sub>3</sub>)<sub>2</sub> · H<sub>2</sub>O was determined by (2), NaAs<sub>4</sub>O<sub>6</sub>Br has not yet been mentioned in the literature.

## Experimental

Crystals of NaAs<sub>4</sub>O<sub>6</sub>Br were synthesized by the reaction of 2 g of an equimolar mixture of NaBr and As<sub>2</sub>O<sub>3</sub> in a Teflonlined vessel ( $V \sim 8$  ml) with methanol (80%) contents) as solvent. After heating at 400(5) K for 5 days and after subsequent slow cooling to room temperature for about 12 hr, colorless prismatic crystals of NaAs<sub>4</sub>  $O_6Br$  were obtained. They are elongated parallel to [100] showing the crystallographic forms {100} and {011}. It is worth mentioning that a modified insert with any alkali halide other than NaBr under the given experimental conditions does not yield a compound isotypic to NaAs<sub>4</sub> $O_6Br$ .

The size of the investigated crystals was  $0.04 \times 0.04 \times 0.5$  mm. Lattice parameters from 75 accurate  $2\theta$  values up to  $2\theta = 40^{\circ}$  as well as the X-ray intensities were collected with a STOE four-circle diffractometer AED2, using graphite monochromatized MoK $\alpha$  radiation [a = 5.237(1), b = 8.043(1), c = 18.978(2) Å; space group *Pmcn-D*<sup>16</sup><sub>2h</sub>; Z = 4]. The measurements were performed up to sin  $\theta/\lambda = 0.80$  Å<sup>-1</sup> in the  $2\theta/\omega$  scan mode. A minimum of 35 steps with respect to the  $\alpha_1-\alpha_2$  splitting was used. The width 5 = 0.022-4596/87 \$3.00

<sup>\*</sup> Dedicated to Dr. H. Nowotny.

#### F. PERTLIK

| Structural Parameters for $NaAs_4O_6Br$ (Standard Deviations in Parentheses) |               |            |            |          |          |          |          |          |                 |
|------------------------------------------------------------------------------|---------------|------------|------------|----------|----------|----------|----------|----------|-----------------|
| Atom                                                                         | x             | у          | Z          | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{12}$ | $U_{13}$ | U <sub>23</sub> |
| As(1)                                                                        | 3<br>4        | 0.16475(7) | 0.88525(4) | 190(2)   | 187(2)   | 174(3)   | 0        | 0        | 15(2)           |
| As(2)                                                                        | <u>3</u><br>4 | 0.65321(7) | 0.04713(4) | 175(2)   | 178(2)   | 242(4)   | 0        | 0        | -38(2)          |
| As(3)                                                                        | <u>3</u><br>4 | 0.40912(7) | 0.17856(4) | 161(2)   | 179(2)   | 192(3)   | 0        | 0        | 3(2)            |
| As(4)                                                                        | <u>3</u><br>4 | 0.78978(7) | 0.83407(3) | 155(2)   | 178(2)   | 185(3)   | 0        | 0        | -9(2)           |
| Br                                                                           | 34            | 0.49657(8) | 0.71646(4) | 243(2)   | 286(3)   | 318(4)   | 0        | 0        | -96(3)          |
| Na                                                                           | $\frac{3}{4}$ | 0.4016(3)  | 0.5563(1)  | 302(13)  | 329(13)  | 241(16)  | 0        | 0        | 4(12)           |
| O(1)                                                                         | 34            | 0.9467(5)  | 0.9036(2)  | 322(22)  | 167(17)  | 222(26)  | 0        | 0        | -48(17)         |
| O(2)                                                                         | 14            | 0.3902(4)  | 0.8607(2)  | 280(20)  | 166(16)  | 293(27)  | 0        | 0        | 36(18)          |
| O(3)                                                                         | 0.0020(5)     | 0.6757(3)  | 0.8778(1)  | 164(11)  | 246(12)  | 187(15)  | 44(10)   | 33(12)   | 0(11)           |
| O(4)                                                                         | 0.9972(5)     | 0.1949(3)  | 0.9512(1)  | 218(12)  | 319(13)  | 206(16)  | -74(11)  | -30(13)  | 51(12)          |

| TABLE I                                                         |             |
|-----------------------------------------------------------------|-------------|
| Structural Parameters for $NaAs_4O_6Bi$ (Standard Deviations in | Parentheses |

Note. The space group is  $Pmcn \cdot D_{2h}^{16}$ . The Wyckoff number for the single atoms is 4c, except that for the atoms O(3) and O(4), for which it is 8d. ATF =  $\exp(-2\pi^2 \sum_{i=1}^3 \sum_{j=1}^3 10^{-4} U_{ij} a_i^* a_j^* h_i h_j)$ 

of each step was 0.03° and the step time ranged from 0.5 to 1.5 sec per step. Three standard reflections were measured each 120 min and showed no significant variation in intensity during the measurement period. The X-ray intensities were corrected for absorption [ $\psi$  scan method,  $\mu(MoK\alpha) \sim$ 211 cm<sup>-1</sup>] as well as for Lorentz and polarization effects. From the mean of 1921 unique data (406 with  $F_o < 2\sigma F_o$ ) the crystal structure was solved by a direct method strategy combined with Fourier and difference Fourier summations and refined by least-squares techniques (68 variables). The final obtained R values are R = 0.038, resp.,  $R_w = 0.028$  with  $w = [\sigma(F_0)]^{2-}$ . All calculations were performed with complex scattering functions for neutral atoms (3)using the program system STRUCSY (Fa · STOE & Cie, Darmstadt, FRG) running on an Eclipse S 140. The structural parameters are listed in Table I. Some important interatomic distances are summarized in Table II.

## Discussion

There are four crystallographically different As atom positions within the structure of NaAs<sub>4</sub>O<sub>6</sub>Br, but their coordination polyhedra (symmetry *m*) are quite similar. Each As atom is coordinated to three O atoms, forming a trigonal pyramid with the As atom at the apex. These coordination polyhedra are characteristic for trivalent arsenium (1, 4) (arsenite groups). The As-O bonds vary from 1.778 to 1.826 Å; the O-As-O bond angles vary from 89.8 to 95.4°. The mean value of As-O bonds calculated from 75 representatives is 1.79 Å and the mean O-As-O angle, also calculated from 75 representatives, is 96° (1).

TABLE II

Selected Interatomic Distances (Å) and Bond Angles (°) for NaAs4O6Bt (Standard Deviations in Parentheses)

| $\begin{array}{l} \text{Na-Br} &= 3.134(2) \\ O(1) &= 3.145(5) \\ O(1') &= 2.751(1) \ 2 \times \\ O(3) &= 2.559(3) \ 2 \times \\ O(4) &= 2.502(3) \ 2 \times \\ O(4') &= 2.708(3) \ 2 \times \end{array}$ | $Br-Na = 3.134(2)$ $As(3) = 3.376(1) 2 \times$ $As(3') = 3.341(1)$ $As(4) = 3.247(1) 3 \times$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| As(1)-O(1) = 1.788(3)<br>$O(4) = 1.817(2) 2 \times$                                                                                                                                                       | $O(1)-O(4) = 89.8(1) 2 \times O(4)-O(4') = 90.9(2)$                                            |
| As(2)-O(2) = 1.784(4)<br>$O(4) = 1.802(2) 2 \times$                                                                                                                                                       | $O(2)-O(4) = 96.6(1) 2 \times O(4)-O(4') = 94.6(2)$                                            |
| As(3)-O(2) = 1.778(3)<br>$O(3) = 1.816(2) 2 \times$                                                                                                                                                       | $O(2)-O(3) = 95.4(1) 2 \times O(3)-O(3') = 91.3(2)$                                            |
| As(4)-O(1) = 1.826(4)<br>$O(3) = 1.809(2) 2 \times$                                                                                                                                                       | $O(1)-O(3) = 91.1(1) 2 \times O(3)-O(3') = 93.7(2)$                                            |
|                                                                                                                                                                                                           |                                                                                                |



FIG. 1. A single  $As_2O_3$  sheet in the field 0 < z < 1/4 (the AsO<sub>3</sub> pyramids are shadowed). The Na and Br atoms are on the opposite sides of the sheet with approximately the same x and y parameters.

In a second coordination sphere the atom As(3) is coordinated to three Br atoms with As-Br = 3.34 Å (1×) and 3.38 Å (2×); the atom As(4) is also coordinated to three Br atoms with As-Br = 3.25 Å (3×). In both these cases the Br atoms complete the AsO<sub>3</sub> coordination polyhedra to distorted octahedra. A comparable feature was described for AsO<sub>3</sub> pyramids, where in some cases the coordination polyhedra of the As atom is completed by additional O atoms with As-O > 2.7 Å to distorted octahedra (1). The present structure determination indicates the possible completion of the As coordination in AsO<sub>3</sub> pyramids by halides. For the atoms As(1) and As(2) the next nearest neighbors are oxygen atoms with As-O > 3.2 Å.

The AsO<sub>3</sub> pyramids are connected via common O corner atoms to sheets in which the AsO<sub>3</sub> pyramids form six-membered rings. In Fig. 1 such an As<sub>2</sub>O<sub>3</sub> sheet is shown in a projection. Three-fourths of the apices of the AsO<sub>3</sub> pyramids have the same orientation; the rest are in the opposite direction. Due to the space group *Pmcn* of the investigated crystal a stacking order of four equivalent sheets is observed. The Na and Br atoms are alternately located on both sides of these sheets: the Br atom lies near three As atoms and the Na atom on the side dominated by the O atoms. Each of the Na atoms is coordinated to nine O atoms and the Br atoms to six As atoms. The Na and the Br atoms are further connected by weak, more or less ionic interactions (Na-Br = 3.13 Å). The comparable value in cubic NaBr is 2.98 Å (5).

The coordination of the O(2) atoms differs from that of the three other O atoms. This atom O(2) is bonded to two As atoms and these As–O bonds are the shortest ones determined in NaAs<sub>4</sub>O<sub>6</sub>Br. The atoms O(1), O(3), and O(4) have in addition to the two As atoms one and two Na atom neighbors, respectively.

In four arsenites, neutrally charged  $As_2$ O<sub>3</sub> sheets have been determined before now. These compounds are two out of the three modifications of  $As_2O_3$  (6, 7) stable at room temperature:  $NaAs_4O_6Br$  (this work) and  $(NH_4Cl \cdot As_2O_3)_2 \cdot H_2O$  (2). In the first



FIG. 2. The four different orientations of the apices (As atoms) of AsO<sub>3</sub> pyramids in six-membered rings connected to neutral As<sub>2</sub>O<sub>3</sub> sheets, which have been determined until now. The topological differences are characterized in idealized figures. (a)  $(NH_4Cl \cdot As_2O_3)_2 \cdot H_2O(l)$ . (b) As<sub>2</sub>O<sub>3</sub> (claudetite I) (7). (c) As<sub>2</sub>O<sub>3</sub> (claudetite II) (6). (d) NaAs<sub>4</sub>O<sub>6</sub>Br.

three representatives these sheets are more or less waved; in the last one the  $As_2O_3$ sheet is strictly planar. Figure 2 shows these connections of AsO<sub>3</sub> pyramids to four topologically different As<sub>2</sub>O<sub>3</sub> sheets. These sheets consist of six-membered rings formed by the connection of the arsenite groups. In  $(NH_4Cl \cdot As_2O_3)_2 \cdot H_2O$  all the As atoms of the As<sub>2</sub>O<sub>3</sub> sheet are arranged on the same side in relation to the O atom plane (Fig. 2a). In claudetite I and II half of the As atoms are on different sides of the least-squares plane defined by the O atoms. In claudetite I (Fig. 2b) rows of AsO<sub>3</sub> pyramids with the same orientation are formed within the six-membered ring; in claudetite II (Fig. 2c) the directions of the As apices are alternately oriented in opposite directions. The As<sub>2</sub>O<sub>3</sub> sheets in NaAs<sub>4</sub>O<sub>6</sub>Br (Fig. 2d) contain two kinds of six-membered arsenite rings: (a) all but one and (b) all but two arsenite groups show the same orientation. It is worth mentioning that no further connections of AsO<sub>3</sub> groups to neutral sheets except the shown four types of sixmembered rings have been determined before now.

#### Acknowledgment

This work was supported by the Hochschuljubiläumsstiftung der Stadt Wien.

## References

- 1. F. PERTLIK, Mh. Chem. 110, 387 (1979).
- 2. M. EDSTRAND AND G. BLOMQVIST, Ark. Kemi 8, 245 (1955).
- "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1974).
- W. H. BAUR, "Handbook of Geochemistry," Vol. II-3, p. 33A, Springer-Verlag, Berlin/Heidelberg/ New York (1978).
- "Tables of Interatomic Distances and Configuration in Molecules and Ions," The Chemical Society, Burlington House, London (1958).
- 6. F. PERTLIK, Mh. Chem. 106, 755 (1975).
- 7. F. PERTLIK, Mh. Chem. 109, 277 (1978).